Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Imaging ; 103: 109-118, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37468020

RESUMO

Access to high-quality MR exams is severely limited for patients with some implanted devices due to labeled MR safety conditions, but small-bore systems can overcome this limitation. For example, a compact 3 T MR scanner (C3T) with high-performance gradients can acquire exams of the head, extremities, and infants. Because of its reduced bore size and the patient being advanced only partially into the bore, the associated electromagnetic (EM) fields drop off rapidly caudal to the head, compared to whole-body systems. Therefore, some patients with MR conditional implanted devices can safely receive 3 T brain exams on the C3T using its strong gradients and a multiple-channel receive coil, while a corresponding exam on whole-body MR is precluded. The purpose of this study is to evaluate the performance of a small-bore scanner for subjects with MR conditional spinal or sacral nerve stimulators, or abandoned cardiac implantable electronic device (CIED) leads. The spatial dependence of specific absorption rate (SAR) on the C3T was compared to whole-body scanners. A device assessment tool was developed and applied to evaluate MR safety individually on the C3T for 12 subjects with implanted devices or abandoned CIED leads. Once MR safety was established, the subjects received a C3T brain exam along with their clinical, 1.5 T exam. The resulting images were graded by three board-certified neuroradiologists. The C3T exams were well-tolerated with no adverse events, and significantly outperformed the whole-body 1.5 T exams in terms of overall image quality.


Assuntos
Imageamento por Ressonância Magnética , Próteses e Implantes , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Coração , Cabeça
2.
STAR Protoc ; 4(3): 102463, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481729

RESUMO

FISH-Flow (fluorescence in situ hybridization-flow cytometry) involves hybridizing fluorescent oligos to RNA and quantifying fluorescence at a single-cell level using flow cytometry. Here, we present a FISH-Flow protocol to quantify nascent 47S and mature 18S and 28S rRNAs in mouse and human cells, including rRNA quantification across cell cycle stages using DNA staining. We describe steps for cell preparation, hybridization of fluorescent probes against rRNA, and DNA staining. We then detail procedures for flow cytometry and data analysis. For complete details on the use and execution of this protocol, please refer to Antony et al. (2022).1.

3.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177534

RESUMO

In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.


Assuntos
Mapeamento Encefálico , Imagem Ecoplanar , Imagem Ecoplanar/métodos , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
4.
Neuroradiol J ; 36(3): 273-288, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36063799

RESUMO

OBJECTIVE: This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps. METHODS: Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing. Activation maps generated from conventional non-denoised (control) data were compared with maps derived from LLR-denoised image data. Four board-certified neuroradiologists completed consensus assessment of activation maps; region-specific and aggregate motor and language consensus thresholds were then compared with nonparametric statistical tests. Additional evaluation included retrospective truncation of exam data without and with LLR denoising; a ROI-based analysis tracked t-statistics and temporal SNR (tSNR) as scan durations decreased. A test-retest assessment was performed; retest data were matched with initial test data and compared for one subject. RESULTS: fMRI activation maps generated from LLR-denoised data predominantly exhibited statistically significant (p = 4.88×10-4 to p = 0.042; one p = 0.062) increases in consensus t-statistic thresholds for motor and language activation maps. Following data truncation, LLR data showed task-specific increases in t-statistics and tSNR respectively exceeding 20 and 50% compared to control. LLR denoising enabled truncation of exam durations while preserving cluster volumes at fixed thresholds. Test-retest showed variable activation with LLR data thresholded higher in matching initial test data. CONCLUSION: LLR denoising affords robust increases in t-statistics on fMRI activation maps compared to routine processing, and offers potential for reduced scan duration while preserving map quality.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Idioma , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
5.
J Magn Reson Imaging ; 55(1): 166-175, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34184362

RESUMO

BACKGROUND: A low-cryogen, compact 3T (C3T) MRI scanner with high-performance gradients capable of simultaneously achieving 80 mT/m gradient amplitude and 700 T/m/second slew rate has been in use to study research patients since March 2016 but has not been implemented in the clinical practice. PURPOSE: To compare head MRI examinations obtained with the C3T system and a conventional whole-body 3T (WB3T) scanner in seven parameters across five commonly used brain imaging sequences. STUDY TYPE: Prospective. SUBJECTS: Thirty patients with a clinically indicated head MRI. SEQUENCE: 3T; T1 FLAIR, T1 MP-RAGE, 3D T2 FLAIR, T2 FSE, and DWI. ASSESSMENT: All patients tolerated the scans well. Three board-certified neuroradiologists scored the comparative quality of C3T and WB3T images in blinded fashion using a five-point Likert scale in terms of: signal-to-noise ratio, lesion conspicuity, motion artifact, gray/white matter contrast, cerebellar folia, susceptibility artifact, and overall quality. STATISTICAL TEST: Left-sided, right-sided, and two-sided Wilcoxon signed rank test; Fisher's method. A P value <0.05 was considered statistically significant. RESULTS: The C3T system performed better than the WB3T in virtually all comparisons, except for motion artifacts for the T1 FLAIR and T1 MP-RAGE sequences, where the WB3T system was deemed better. When combining all sequences together, the C3T system outperformed the WB3T system in all image quality parameters evaluated, except for motion artifact (P = 0.13). DATA CONCLUSION: The C3T scanner provided better overall image quality for all sequences, and performed better in all individual categories, except for motion artifact on the T1 FLAIR and T1 MP-RAGE. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Estudos Prospectivos
6.
AJR Am J Roentgenol ; 216(2): 552-559, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33236945

RESUMO

OBJECTIVE. The Adaptive Image Receive (AIR) radiofrequency coil is an emergent technology that is lightweight and flexible and exhibits electrical characteristics that overcome many of the limitations of traditional rigid coil designs. The purpose of this study was to apply the AIR coil for whole-brain imaging and compare the performance of a prototype AIR coil array with the performance of conventional head coils. SUBJECTS AND METHODS. A phantom and 15 healthy adult participants were imaged. A prototype 16-channel head AIR coil was compared with conventional 8-and 32-channel head coils using clinically available MRI sequences. During consensus review, two board-certified neuroradiologists graded the AIR coil compared with an 8-channel coil and a 32-channel coil on a 5-point ordinal scale in multiple categories. One- and two-sided Wilcoxon signed rank tests were performed. Noise covariance matrices and geometry factor (g-factor) maps were calculated. RESULTS. The signal-to-noise ratio, structural sharpness, and overall image quality scores of the prototype 16-channel AIR coil were better than those of the 8-channel coil but were not as good as those of the 32-channel coil. Noise covariance matrices showed stable performance of the AIR coil across participants. The median g-factors for the 16-channel AIR coil were, overall, less than those of the 8-channel coil but were greater than those of the 32-channel coil. CONCLUSION. On average, the prototype 16-channel head AIR coil outperformed a conventional 8-channel head coil but did not perform as well as a conventional 32-channel head coil. This study shows the feasibility of the novel AIR coil technology for imaging the brain and provides insight for future coil design improvements.


Assuntos
Artefatos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Adulto , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Razão Sinal-Ruído , Adulto Jovem
7.
Phys Med Biol ; 65(23): 235024, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33245051

RESUMO

Improved gradient performance in an MRI system reduces distortion in echo planar imaging (EPI), which has been a key imaging method for functional studies. A lightweight, low-cryogen compact 3T MRI scanner (C3T) is capable of achieving 80 mT m-1 gradient amplitude with 700 T m-1 s-1 slew rate, in comparison with a conventional whole-body 3T MRI scanner (WB3T, 50 mT m-1 with 200 T m-1 s-1). We investigated benefits of the high-performance gradients in a high-spatial-resolution (1.5 mm isotropic) functional MRI study. Reduced echo spacing in the EPI pulse sequence inherently leads to less severe geometric distortion, which provided higher accuracy than with WB3T for registration between EPI and anatomical images. The cortical coverage of C3T datasets was improved by more accurate signal depiction (i.e. less dropout or pile-up). Resting-state functional analysis results showed that greater magnitude and extent in functional connectivity (FC) for the C3T than the WB3T when the selected seed region is susceptible to distortions, while the FC matrix for well-known brain networks showed little difference between the two scanners. This shows that the improved quality in EPI is particularly valuable for studying certain brain regions typically obscured by severe distortion.


Assuntos
Imagem Ecoplanar/métodos , Descanso , Encéfalo/diagnóstico por imagem , Humanos
8.
Phys Med Biol ; 65(15): 15NT02, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32503007

RESUMO

One of the major concerns associated with high-performance gradients is peripheral nerve stimulation (PNS) of the subject during MRI exams. Since the installation, more than 680 volunteer subjects (patients and controls) have been scanned on a compact 3 T MRI system with high-performance gradients, capable of 80 mT m-1 gradient amplitude and 700 T m-1 s-1 slew rate simultaneously. Despite PNS concerns associated with the high-performance gradients, due to the smaller physical dimensions of the gradient coils, minimal or no PNS sensation was reported with most pulse sequences. The exception was PNS reported by only five of 252 subjects (about 2%) scanned with a specific 3D fast spin echo pulse sequence (3DFLAIR). Rather than derating the entire system performance across all pulse sequences and all gradient lobes, we addressed reported PNS effect with a simple and specific modification to the targeted lobes of the problematic pulse sequence. in addition, the PNS convolutional model was adapted to predict sequence-specific PNS threshold level and its reduction after derating. The effectiveness of the targeted pulse sequence modification was demonstrated by successfully re-scanning four of the subjects who previously reported PNS sensations without further reported PNS. The pulse sequence modification did not result in noticeable degradation of image quality or substantial increase in scan time. The results demonstrated that PNS was rarely reported on the compact 3 T, and when it was, utilizing a specific modification of the gradient waveform causing PNS was an effective strategy, rather than derating the performance of the entire gradient system.


Assuntos
Estimulação Elétrica , Imageamento por Ressonância Magnética/instrumentação , Nervos Periféricos , Humanos , Nervos Periféricos/diagnóstico por imagem
9.
J Magn Reson Imaging ; 51(1): 296-310, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111581

RESUMO

BACKGROUND: Distortion-free, high-resolution diffusion imaging using DIADEM (Distortion-free Imaging: A Double Encoding Method), proposed recently, has great potential for clinical applications. However, it can suffer from prolonged scan times and its reliability for quantitative diffusion imaging has not been evaluated. PURPOSE: To investigate the clinical feasibility of DIADEM-based high-resolution diffusion imaging on a novel compact 3T (C3T) by evaluating the reliability of quantitative diffusion measurements and utilizing both the high-performance gradients (80 mT/m, 700 T/m/s) and the sequence optimization with the navigator acquisition window reduction and simultaneous multislice (multiband) imaging. STUDY TYPE: Prospective feasibility study. PHANTOM/SUBJECTS: Diffusion quality control phantom scans to evaluate the reliability of quantitative diffusion measurements; 36 normal control scans for B0 -field mapping; six healthy and two patient subject scans with a brain tumor for comparisons of diffusion and anatomical imaging. FIELD STRENGTH/SEQUENCE: 3T; the standard single-shot echo-planar-imaging (EPI), multishot DIADEM diffusion, and anatomical (2D-FSE [fast-spin-echo], 2D-FLAIR [fluid-attenuated-inversion-recovery], and 3D-MPRAGE [magnetization prepared rapid acquisition gradient echo]) imaging. ASSESSMENT: The scan time reduction, the reliability of quantitative diffusion measurements, and the clinical efficacy for high-resolution diffusion imaging in healthy control and brain tumor volunteers. STATISTICAL TEST: Bland-Altman analysis. RESULTS: The scan time for high in-plane (0.86 mm2 ) resolution, distortion-free, and whole brain diffusion imaging were reduced from 10 to 5 minutes with the sequence optimizations. All of the mean apparent diffusion coefficient (ADC) values in phantom were within the 95% confidence interval in the Bland-Altman plot. The proposed acquisition with a total off-resonance coverage of 597.2 Hz wider than the expected bandwidth of 500 Hz in human brain could yield a distortion-free image without foldover artifacts. Compared with EPI, therefore, this approach allowed direct image matching with the anatomical images and enabled improved delineation of the tumor boundaries. DATA CONCLUSION: The proposed high-resolution diffusion imaging approach is clinically feasible on C3T due to a combination of hardware and sequence improvements. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;51:296-310.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Ecoplanar , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
10.
Magn Reson Med ; 84(1): 192-205, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31799747

RESUMO

PURPOSE: To demonstrate the feasibility of pseudo-continuous arterial-spin-labeled (pCASL) imaging with 3D fast-spin-echo stack-of-spirals on a compact 3T scanner (C3T), to perform trajectory correction for eddy-current-induced deviations in the spiral readout of pCASL imaging, and to assess the correction effect on perfusion-related images with high-performance gradients (80 mT/m, 700T/m/s) of the C3T. METHODS: To track eddy-current-induced artifacts with Archimedean spiral readout, the spiral readout in pCASL imaging was performed with 5 different peak gradient slew rate (Smax ) values ranging from 70 to 500 T/m/s. The trajectory for each Smax was measured using a dynamic field camera and applied in a density-compensated gridding image reconstruction in addition to the nominal trajectory. The effect of the trajectory correction was assessed with perfusion-weighted (ΔM) images and proton-density-weighted images as well as cerebral blood flow (CBF) maps, obtained from 10 healthy volunteers. RESULTS: Blurring artifact on ΔM images was mitigated by the trajectory correction. CBF values on the left and right calcarine cortices showed no significant difference after correction. Also, the signal-to-noise ratio of ΔM images improved, on average, by 7.6% after correction (P < .001). The greatest improvement of 12.1% on ΔM images was achieved with a spiral readout using Smax of 300~400 T/m/s. CONCLUSION: Eddy currents can cause spiral trajectory deviation, which leads to deformation of the CBF map even in cases of low value Smax . The trajectory correction for spiral-readout-based pCASL produces more reliable results for perfusion imaging. These results suggest that pCASL is feasible on C3T with high-performance gradients.


Assuntos
Imageamento Tridimensional , Angiografia por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Humanos , Marcadores de Spin
11.
Magn Reson Med ; 79(3): 1354-1364, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28643408

RESUMO

PURPOSE: To investigate the effect of the asymmetric gradient concomitant fields (CF) with zeroth and first-order spatial dependence on fast/turbo spin-echo acquisitions, and to demonstrate the effectiveness of their real-time compensation. METHODS: After briefly reviewing the CF produced by asymmetric gradients, the effects of the additional zeroth and first-order CFs on these systems are investigated using extended-phase graph simulations. Phantom and in vivo experiments are performed to corroborate the simulation. Experiments are performed before and after the real-time compensations using frequency tracking and gradient pre-emphasis to demonstrate their effectiveness in correcting the additional CFs. The interaction between the CFs and prescan-based correction to compensate for eddy currents is also investigated. RESULTS: It is demonstrated that, unlike the second-order CFs on conventional gradients, the additional zeroth/first-order CFs on asymmetric gradients cause substantial signal loss and dark banding in fast spin-echo acquisitions within a typical brain-scan field of view. They can confound the prescan correction for eddy currents and degrade image quality. Performing real-time compensation successfully eliminates the artifacts. CONCLUSIONS: We demonstrate that the zeroth/first-order CFs specific to asymmetric gradients can cause substantial artifacts, including signal loss and dark bands for brain imaging. These effects can be corrected using real-time compensation. Magn Reson Med 79:1354-1364, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Artefatos , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imagens de Fantasmas
12.
Biophys J ; 111(3): 537-545, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508437

RESUMO

Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n-alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n-alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n-alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described "intoxication reversers" raise Tc and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia.


Assuntos
Álcoois/farmacologia , Anestesia , Microdomínios da Membrana/efeitos dos fármacos , Álcoois/química , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Tumoral , Interações Hidrofóbicas e Hidrofílicas , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ratos , Temperatura , Xenopus laevis
13.
Magn Reson Med ; 75(6): 2534-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26183425

RESUMO

PURPOSE: To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. METHODS: Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. RESULTS: Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. CONCLUSION: Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Dinâmica não Linear , Encéfalo/diagnóstico por imagem , Análise de Fourier , Humanos , Imagens de Fantasmas
14.
Med Phys ; 42(12): 7190-201, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26632073

RESUMO

PURPOSE: To derive a noniterative gridding-type reconstruction framework for nonCartesian magnetic resonance imaging (MRI) that prospectively accounts for gradient nonlinearity (GNL)-induced image geometrical distortion during MR image reconstruction, as opposed to the standard, image-domain based GNL correction that is applied after reconstruction; to demonstrate that such framework is able to reduce the image blurring introduced by the conventional GNL correction, while still offering effective correction of GNL-induced geometrical distortion and compatibility with off-resonance correction. METHODS: After introducing the nonCartesian MRI signal model that explicitly accounts for the effects of GNL and off-resonance, a noniterative gridding-type reconstruction framework with integrated GNL correction based on the type-III nonuniform fast Fourier transform (NUFFT) is derived. A novel type-III NUFFT implementation is then proposed as a numerically efficient solution to the proposed framework. The incorporation of simultaneous B0 off-resonance correction to the proposed framework is then discussed. Several phantom and in vivo data acquired via various 2D and 3D nonCartesian acquisitions, including 2D Archimedean spiral, 3D shells with integrated radial and spiral, and 3D radial sampling, are used to compare the results of the proposed and the standard GNL correction methods. RESULTS: Various phantom and in vivo data demonstrate that both the proposed and the standard GNL correction methods are able to correct the coarse-scale geometric distortion and blurring induced by GNL and off-resonance. However, the standard GNL correction method also introduces blurring effects to corrected images, causing blurring of resolution inserts in the phantom images and loss of small vessel clarity in the angiography examples. On the other hand, the results after the proposed GNL correction show better depiction of resolution inserts and higher clarity of small vessel. CONCLUSIONS: The proposed GNL-integrated nonCartesian reconstruction method can mitigate the resolution loss that occurs during standard image-domain GNL correction, while still providing effective correction of coarse-scale geometric distortion and blurring induced by GNL and off-resonance.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/anatomia & histologia , Simulação por Computador , Análise de Fourier , Humanos , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Dinâmica não Linear , Imagens de Fantasmas
15.
PLoS One ; 10(9): e0137741, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26368288

RESUMO

Giant plasma membrane vesicle (GPMV) isolated from a flask of RBL-2H3 cells appear uniform at physiological temperatures and contain coexisting liquid-ordered and liquid-disordered phases at low temperatures. While a single GPMV transitions between these two states at a well-defined temperature, there is significant vesicle-to-vesicle heterogeneity in a single preparation of cells, and average transition temperatures can vary significantly between preparations. In this study, we explore how GPMV transition temperatures depend on growth conditions, and find that average transition temperatures are negatively correlated with average cell density over 15°C in transition temperature and nearly three orders of magnitude in average surface density. In addition, average transition temperatures are reduced by close to 10°C when GPMVs are isolated from cells starved of serum overnight, and elevated transition temperatures are restored when serum-starved cells are incubated in serum-containing media for 12 h. We also investigated variation in transition temperature of GPMVs isolated from cells synchronized at the G1/S border through a double Thymidine block and find that average transition temperatures are systematically higher in GPMVs produced from G1 or M phase cells than in GPMVs prepared from S or G1 phase cells. Reduced miscibility transition temperatures are also observed in GPMVs prepared from cells treated with TRAIL to induce apoptosis or sphingomyelinase, and in some cases a gel phase is observed at temperatures above the miscibility transition in these vesicles. We conclude that at least some variability in GPMV transition temperature arises from variation in the local density of cells and asynchrony of the cell cycle. It is hypothesized that GPMV transition temperatures are a proxy for the magnitude of lipid-mediated membrane heterogeneity in intact cell plasma membranes at growth temperatures. If so, these results suggest that cells tune their plasma membrane composition in order to control the magnitude of membrane heterogeneity in response to different growth conditions.


Assuntos
Membrana Celular/química , Micropartículas Derivadas de Células/química , Fase G1 , Temperatura Alta , Fase S , Linhagem Celular , Humanos , Transição de Fase
16.
Biophys J ; 107(8): 1873-1884, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25418168

RESUMO

Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.


Assuntos
Proteínas de Membrana/metabolismo , Oxigênio/metabolismo , Actinas/química , Actinas/metabolismo , Hipóxia Celular , Difusão , Células HeLa , Humanos , Proteínas de Membrana/química
17.
PLoS Genet ; 7(3): e1001357, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21483806

RESUMO

Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture.


Assuntos
Proteína BRCA2/fisiologia , Instabilidade Genômica , Neoplasias de Tecido Gonadal/genética , Oócitos/fisiologia , Oogênese , Espermatogênese , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Animais , Apoptose/genética , Proteína BRCA2/genética , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Anemia de Fanconi/genética , Feminino , Genes p53/genética , Genes p53/fisiologia , Humanos , Masculino , Dados de Sequência Molecular , Mutagênese Insercional/genética , Oócitos/citologia , Fenótipo , Espermatócitos/citologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...